Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

MICHAEL WAECHTER, MATE BELJAN, SIMON FUHRMANN, and NILS MOEHRLE
Technische Universität Darmstadt
JOHANNES KOPF
Facebook
and
MICHAEL GOESELE
Technische Universität Darmstadt

The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include a light field and most image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One key advantage of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, demonstrate its utility for a range of use cases, and present a new virtual rephotography-based benchmark for image-based modeling and rendering systems.

CCS Concepts: Computing methodologies → Reconstruction; Image-based rendering;

Additional Key Words and Phrases: image-based rendering, image-based modeling, 3D reconstruction, multi-view stereo, novel view prediction error

ACM Reference Format:
DOI: http://dx.doi.org/10.1145/2999533

Fig. 1. Castle Ruin with different 3D reconstruction representations. Geometry-based evaluation methods [Seitz et al. 2006; Strecha et al. 2008; Aanæs et al. 2016] cannot distinguish (a) from (b) as both have the same geometry. While the splatted point cloud (c) could in principle be evaluated with these methods, the IBR solution (d) cannot be evaluated at all.

1. INTRODUCTION

Intense research in the computer vision and computer graphics communities has lead to a wealth of image-based modeling and rendering systems that take images as input, construct a model of the scene, and then create photo-realistic renderings for novel viewpoints. The computer vision community contributed tools such as structure from motion and multi-view stereo to acquire geometric models that can subsequently be textured. The computer graphics community proposed various geometry- or image-based rendering systems. Some of these, such as the Lumigraph [Gortler et al. 1996], synthesize novel views directly from the input images (plus a rough geometry approximation), producing photo-realistic results without relying on a detailed geometric model of the scene. Even though remarkable progress has been made in the area of modeling and rendering of real scenes, a wide range of issues remain, especially when dealing with complex datasets under uncontrolled conditions. In order to measure and track the progress of this ongoing research, it is essential to perform objective evaluations.
Existing evaluation efforts focus on systems that acquire mesh models. They compare the reconstructed meshes with ground truth geometry and evaluate measures such as geometric completeness and accuracy [Seitz et al. 2006; Strecha et al. 2008; Aanæs et al. 2016]. This approach falls short in several regards: First, only scenes with available ground-truth models can be analyzed. Ground-truth models are typically not available for large-scale reconstruction projects outside the lab such as PhotoCity [Tuite et al. 2011], but there is, nevertheless, a need to evaluate reconstruction quality and identify problematic scene parts. Second, evaluating representations other than meshes is problematic: Point clouds can only be partially evaluated (only reconstruction accuracy can be measured but not completeness), and image-based rendering representations or light fields [Levoy and Hanrahan 1996] cannot be evaluated at all. And third, it fails to measure properties that are complementary to geometric accuracy. While there are a few applications where only geometric accuracy matters (e.g., reverse engineering or 3D printing), most applications that produce renderings for human consumption are arguably more concerned with visual quality. This is for instance the main focus in image-based rendering where the geometric proxy does not necessarily have to be accurate and only visual accuracy of the resulting renderings matters.

If we consider, e.g., multi-view stereo reconstruction pipelines, for which geometric evaluations such as the common multi-view benchmarks [Seitz et al. 2006; Strecha et al. 2008; Aanæs et al. 2016] were designed, we can easily see that visual accuracy is complementary to geometric accuracy. The two measures are intrinsically related since errors in the reconstructed geometry tend to be visible in renderings (e.g., if a wall’s depth has not been correctly estimated, this may not be visible in a frontal view but definitely when looking at it at an angle), but they are not fully correlated and are therefore distinct measures. Evaluating the visual quality adds a new element to multi-view stereo reconstruction: recovering a good surface texture in addition to the scene geometry. Virtual scenes are only convincing if effort is put into texture acquisition, which is challenging, especially with datasets captured under uncontrolled, real-world conditions with varying exposure, illumination, or foreground clutter. If this is done well, the resulting texture may even hide small geometric errors.

A geometric reconstruction evaluation metric does not allow directly measuring the achieved visual quality of the textured model, and it is not always a good indirect predictor for visual quality: In Figure 2 we textured four submissions to the Middlebury benchmark using Waechter et al.’s approach [2014]. The textured model in Figure 2(a) is strongly fragmented while the model in 2(b) is not. Thus, the two renderings exhibit very different visual quality. Their similar geometric error, however, does not reflect this. Contrarily, Figures 2(c) and 2(d) have very different geometric errors despite similar visual quality. Close inspection shows that 2(d) has a higher geometric error because its geometry is too smooth. This is hidden by the texture, at least from the viewpoints of the renderings. In both cases similarity of geometric error is a poor predictor for similarity of visual quality, clearly demonstrating that the purely distance-based Middlebury evaluation is by design unable to capture certain aspects of 3D reconstructions. Thus, a new methodology that evaluates visual reconstruction quality is needed.

Most 3D reconstruction pipelines are modular: Typically, structure from motion (SfM) is followed by dense reconstruction, texturing and rendering (in image-based rendering the latter two steps are combined). While each of these steps can be evaluated individually, our proposed approach is holistic and evaluates the complete pipeline including the rendering step by scoring the visual quality of the final renderings. This is more consistent with the way humans would assess quality: They are not concerned with the quality of intermediate representations (e.g., a 3D mesh model), but instead consider 2D projections, i.e., renderings of the final model from different viewpoints.

Leclerc et al. [2000] pointed out that in the real world inferences that people make from one viewpoint, are consistent with the observations from other viewpoints. Consequently, good models of real world scenes must be self-consistent as well. We exploit this self-consistency property as follows: We divide the set of captured images into a training set and an evaluation set. We then reconstruct the training set with an image-based modeling pipeline, render novel views with the camera parameters of the evaluation images, and compare those renderings with the evaluation images using selected image difference metrics.

This can be seen as a machine learning view on 3D reconstruction: Algorithms infer a model of the world based on training images and make predictions for evaluation images. For systems whose purpose is the production of realistic renderings our approach is the most natural evaluation scheme because it directly evaluates the output instead of internal models. In fact, our approach encourages that future reconstruction techniques take photo-realistic renderability into account. This line of thought is also advocated by Shan et al.’s Visual Turing Test [2013] or Vanhoey et al.’s appearance-preserving mesh simplification [2015].

Our work draws inspiration from Szeliski [1999], who proposed to use intermediate frames for optical flow evaluation. We extend this into a complete evaluation paradigm which is able to handle a diverse set of image-based modeling and rendering methods. Since the idea to imitate image poses resembles computational rephotography [Bae et al. 2010] as well as the older concept of repeat photography [Webb et al. 2010], we call our technique virtual rephotography and call renderings rephotos. By enabling the evaluation of visual accuracy, virtual rephotography puts visual accuracy on a level with geometric accuracy as a quality of 3D reconstructions.

In summary, our contributions are as follows:

—A flexible evaluation paradigm using the novel view prediction error that can be applied to any renderable scene representation,

—quantitative view-based error metrics in terms of image difference and completeness for the evaluation of photo-realistic renderings,

—a thorough evaluation of our methodology on several datasets and with different reconstruction and rendering techniques, and

—a virtual rephotography-based benchmark.
Our approach has the following advantages over classical evaluation systems:

— It allows measuring aspects complementary to geometry, such as texture quality in a multi-view stereo plus texturing pipeline,
— it dramatically simplifies the creation of new benchmarking datasets since it does not require a ground truth geometry acquisition and vetting process,
— it enables direct error visualization and localization on the scene representation (see, e.g., Figure 11), which is useful for error analysis and acquisition guidance, and
— it makes reconstruction quality directly comparable across different scene representations (see, e.g., Figure 1) and thus closes a gap between computer vision and graphics techniques.

2. RELATED WORK

Photo-realistic reconstruction and rendering is a topic that spans both computer graphics and vision. On the reconstruction side, the geometry-based Middlebury multi-view stereo benchmark [Seitz et al. 2006] and other factors have triggered research on different reconstruction approaches. On the image-based rendering (IBR) side, many evaluation approaches have been proposed [Schwarz and Stamminger 2009; Berger et al. 2010; Guthe et al. 2016] but most of them are too specialized to be directly transferable to 3D reconstruction. This paper takes a wider perspective by considering complete reconstruction and rendering pipelines.

In the following we first provide a general overview of evaluation techniques for image-based modeling and rendering, before we discuss image comparison metrics with respect to their suitability for our proposed virtual rephotography framework.

2.1 Evaluating Image-Based Modeling & Rendering

Algorithms need to be objectively evaluated in order to prove that they advance their field [Fürstner 1996]. For the special case of multi-view stereo (MVS) this is, e.g., done using the Middlebury MVS benchmark [Seitz et al. 2006]: It evaluates algorithms by comparing reconstructed geometry with scanned ground truth and measures accuracy (distance of the mesh vertices to the ground truth) and completeness (percentage of ground truth nodes within a threshold of the reconstruction). The downsides of this purely geometric evaluation have been discussed in Section 1. In addition, this benchmark has aged and cannot capture most aspects of recent MVS research (e.g., preserving fine details when merging depth maps with drastically different scales or recovering texture). Strecha et al. [2008] released a more challenging benchmark with larger and more realistic architectural outdoor scenes and larger images. They use laser scanned ground truth geometry and compute measures similar to the Middlebury benchmark. Most recently, Aanæs et al. [2016] released a more comprehensive dataset of controlled indoor scenes with larger, higher quality images, more accurate camera positions, much denser ground truth geometry and a modified evaluation protocol that is still based on geometric accuracy. They therefore address no fundamentally new challenges and all objections stated against Middlebury above apply here as well. Thus, researchers who address more challenging conditions or non-geometric aspects still have to rely mostly on qualitative comparison, letting readers judge their results by visual inspection.

Szeliski [1999] encountered the same problem in the evaluation of optical flow and stereo and proposed novel view prediction error as a solution: Instead of measuring how well algorithms estimate flow, he measures how well the estimated flow performs in frame rate doubling. Given two video frames for time t and $t + 2$, flow algorithms predict the frame $t + 1$, and this is compared with the non-public ground truth frame. Among other metrics this has been implemented in the Middlebury flow benchmark [Baker et al. 2011]. Leclerc et al. [2000] use a related concept for stereo evaluation: They call a stereo algorithm self-consistent if its depth hypotheses for image I_1 are the same when inferred from image pairs (I_0, I_1) and (I_1, I_2). Szeliski’s (and our) criterion is more flexible: It allows the internal model (a flow field for Szeliski, depth for Leclerc) to be wrong as long as the resulting rendering looks correct, a highly relevant case as demonstrated by Hofsetz et al. [2004]. Virtual rephotography is clearly related to these approaches. However, Szeliski only focused on view interpolation in stereo and optical flow. We extend novel view prediction error to the much more challenging general case of image-based modeling and rendering where views have to be extrapolated over much larger distances.

Novel view prediction has previously been used in image-based modeling and rendering, namely for BRDF recovery [Yu et al. 1999, Section 7.2.3]. However, they only showed qualitative comparisons. The same holds for the Visual Turing Test: Shan et al. [2013] ask users in a study to compare renderings and original images at different resolutions to obtain a qualitative judgment of realism. In contrast, we automate this process by comparing renderings and original images from the evaluation set using several image difference metrics to quantitatively measure and localize reconstruction defects. We suggest the novel view prediction error as a general, quantitative evaluation method for the whole field of image-based modeling and rendering, and present a comprehensive evaluation to shed light on its usefulness for this purpose.

Fitzgibbon et al. [2005] use the novel view prediction error to quantify their IBR method’s error, but they neither reflect on this method’s properties nor do they use the obtained difference images to compare their results with other IBR methods. Further, their image difference metric (RGB difference) only works in scenarios where all images have identical camera response curves, illumination, and exposure. We show in the supplemental material that a very similar metric ($C_r + C_b$ difference in YCbCr color space) fails in settings that are more unconstrained than Fitzgibbon’s.

One 3D reconstruction quality metric that, similarly to ours, does not require geometric ground truth data, is Hoppe et al.’s [2012a] metric for view planning in multi-view stereo. For a triangle mesh it checks each triangle’s degree of visibility redundancy and maximal resolution. In contrast to our method it does not measure visual reconstruction quality itself, but it measures circumstances that are assumed to cause reconstruction errors.

In image-based rendering a variety of works cover the automatic or manual evaluation of result quality. Schwarz and Stamminger [2009], Berger et al. [2010], and Guthe et al. [2016] automatically detect ghosting and popping artifacts in IBR. Vangorp et al. [2011] investigate how users rate the severity of ghosting, blurring, popping, and parallax distortion artifacts in street-level IBR subject to parameters such as scene coverage by the input images, number of images used to blend output pixels, or viewing angle. In later work, Vangorp et al. [2013] evaluate how users perceive parallax distortions in street-level IBR (more specifically distortions of rectangular protrusions in synthetic facade scenes rendered with planar IBR proxies) and derive metrics that indicate where in an IBR scene a user should be allowed to move or where additional images of the scene should be captured to minimize distortions. Like in Hoppe et al.’s [2012a] work their final metric is independent of the actual visual appearance of the rendered scene and only takes its geometry into account. In video-based rendering Tompkin et al. [2013] analyze user preferences for different types of transi-
evaluations near the visibility threshold. Since reconstruction defects should at least give reconstructions an ordering (i.e., if model A is better than B, its error score should be lower than B’s). In the following we will always refer to this as the ordering criterion.

Fulfilling all of these desiderata simultaneously and completely is challenging. In fact, the classical geometry-based evaluation methods [Seitz et al. 2006; Strecha et al. 2008; Aanæs et al. 2016] satisfy only the first and the last item above (in geometry-only scenarios it evaluates the use case and it is linear). In contrast, our virtual rephotography approach fulfills all except for the last requirement (it provides an ordering but is not necessarily linear). We therefore argue that it is an important contribution that is complementary to existing evaluation methodologies.

In the following, we first describe our method, the overall workflow and the used metrics in detail before evaluating our method in Section 4 using a set of controlled experiments.

3.1 Overview and Workflow

The key idea of our proposed evaluation methodology is that the performance of each algorithm stage is measured in terms of the impact on the final rendering result. This makes the specific system to be evaluated largely interchangeable, and allows evaluating different combinations of components end-to-end. The only requirement is that the system builds a model of the world from given input images and can then produce (photo-realistic) renderings for the view-points of test images.

We now give a brief overview over the complete workflow: Given a set of input images of a scene such as the one depicted in Figure 4a, we perform reconstruction using n-fold cross-validation. In each of the n cross-validation instances we put 1/n th of the images into an evaluation set E and the remaining images into a training set T. The training set T is then handed to the reconstruction algorithm that produces a 3D representation of the scene. This could, e.g., be a textured mesh, a point cloud with vertex colors, or the internal representation of an image-based rendering approach such as the set of training images combined with a geometric proxy of the scene. In Sections 4 and 5 we show multiple examples of reconstruction algorithms which we used for evaluation.
The reconstruction algorithm then rephotographs the scene, i.e., renders it photo-realistically using its own, native rendering system with the exact extrinsic and intrinsic camera parameters of the images in E (see Figure 4b for an example). If desired, this step can also provide a completeness mask that marks pixels not included in the rendered reconstruction (see Figure 4c). Note, that we regard obtaining the camera parameters as part of the reconstruction algorithm. However, since the test images are disjoint from the training images, camera calibration (e.g. using structure from motion [Snavely et al. 2006]) must be done beforehand to have all camera parameters in the same coordinate frame. State-of-the-art structure from motion systems are sub-pixel accurate for the most part (otherwise multi-view stereo would not work on them) and are assumed to be accurate enough for the purpose of this evaluation.

Next, we compare rephotos and test images with image difference metrics and ignore those image regions that the masks mark as unreconstructed (see Figure 4d for an example of a difference image). We also compute completeness as the fraction of valid mask pixels. We then average completeness and error scores over all rephotos to obtain global numerical scores for the whole dataset.

Finally, we can project the difference images onto the reconstructed model to visualize local reconstruction error (see Fig. 4e).

3.2 Accuracy and Completeness

In order to evaluate the visual accuracy of rephotos we measure their similarity to the test images using image difference metrics. The simplest choice would be the pixel-wise mean squared error. The obvious drawback is that it is not invariant to luminance changes. If we declared differences in luminance as a reconstruction error, we would effectively require all image-based reconstruction and rendering algorithms to bake illumination effects into their reconstructed models or produce them during rendering. However, currently only few reconstruction algorithms recover the true albedo and reflection properties of surfaces as well as the scene lighting (examples include Haber et al.’s [2009] and Shan et al.’s [2013] works). An evaluation metric that only works for such methods would have a very small scope. Furthermore, in real-world datasets illumination can vary among the input images and capturing the ground truth illumination for the test images would drastically complicate our approach. Thus, it seems adequate to use luminance-invariant image difference metrics.

We therefore use the $YCbCr$ color space and sum up the absolute errors in the two chrominance channels. We call this $C_y^+ + C_c^+$ error in the following. This metric takes, however, only single pixels into consideration, and detects in practice mostly minor color noise.

Thus, we also analyze patch-based metrics, some of which are frequently used in stereo and optical flow: Zero-mean sum of squared differences (ZSSD), Wang et al.’s [2004] structural dissimilarity index DSSIM $= (1 - \text{SSIM})/2$, normalized cross-correlation (we use 1-NCC instead of NCC to obtain a dissimilarity metric), Census [Zabih and Woodfill 1994], and six variants of Preiss et al.’s [2014] improved color image difference $iCID$. For presentation clarity we will only discuss one metric throughout this paper: 1-NCC. This is because it is a well-established tool in computer vision (e.g., in stereo or optical flow) precisely for our purpose—comparing image similarity in the presence of changes in illumination, exposure etc.—and (as we shall see in Sections 4 and 5.1.1) because it best fulfills properties such as the ordering criterion defined in Section 3. ZSSD, DSSIM, Census, and $iCID$ fulfill the same properties but to a lesser degree and are therefore shown in the supplemental material. Further, we show in the supplemental material that the pixel-based $C_y^+ + C_c^+$ error is in general unable to detect larger structural defects and does not fulfill the ordering criterion.

In conjunction with the above accuracy measures one must always compute some completeness measure, which states the fraction of the test set for which the algorithm made a prediction. Otherwise algorithms could resort to rendering only those scene parts where they are certain about their prediction’s correctness. For the same reason machine learning authors report precision and recall and geometric reconstruction benchmarks [Seitz et al. 2006; Strecha et al. 2008] report geometric accuracy and completeness. For our purpose we use the percentage of rendered pixels as completeness. It is hereby understood that many techniques cannot reach a completeness score of 100% since they do not model the complete scene visible in the input images.

4. EVALUATION

In the following, we perform an evaluation of our proposed methodology using a range of experiments. In Sections 4.1 and 4.2 we first demonstrate how degradations in the reconstructed model or the input data influence the computed accuracy. We show in particular, that our metric fulfills the ordering criterion defined in Section 3. In Section 4.3 we discuss the relation between our methodology and the standard Middlebury MVS benchmark [Seitz et al. 2006]. Finally, we analyze in Section 4.4 to what extent deviating from the classical, strict separation of training and test set decreases the validity of our evaluation methodology.

4.1 Evaluation with Synthetic Degradation

In this section we show that virtual rephotography fulfills the aforementioned ordering criterion on very controlled data. If we have a dataset’s ground truth geometry and can provide a good quality texture, this should receive zero or a very small error. Introducing artificial defects into this model decreases the model’s quality, which should in turn be detected by the virtual rephotography approach.

We take Strecha et al.’s [2008] Fountain-P11 dataset for which camera parameters and ground truth geometry are given. We compensate for exposure differences in the images (using the images’ exposure times and an approximate response curve for the used camera) and project them onto the mesh to obtain a near-perfectly colored model with vertex colors (the ground truth mesh’s reso-
Algorithm for community photo collections (CPCs) [Goesele et al. 2006], and remove superfluous triangles generated from low octree levels. We refer to this pipeline as CMVS+PSR. In the section on MVS reconstructions with more uncontrolled data. Starting from the colored ground truth we synthetically apply three different kinds of defects to the model (see Figure 5 for examples) to evaluate their effects on our metrics:

—Texture noise: In order to model random photometric distortions, we change vertex colors using simplex noise [Perlin 2002]. The noise parameter n_{tex} is the maximum offset per RGB channel.

—Geometry noise: Geometric errors in reconstructions are hard to model. We therefore use a very general model and displace vertices along their normal using simplex noise. The parameter n_{geom} is the maximum offset as a fraction of the scene’s extent.

—Mesh simplification: To simulate different reconstruction resolutions, we simplify the mesh using edge collapse operations. The parameter n_{simp} is the fraction of eliminated vertices.

In Figure 6 we apply all three defects with increasing strength and evaluate the resulting meshes using our method. The 1-NCC error reflects the increase in noise with an increase in error. One reason why the error does not vanish for $n_{tex} = n_{geom} = n_{simp} = 0$, is that we cannot produce realistic shading effects easily.

4.2 Evaluation with Multi-View Stereo Data

In the following experiment we demonstrate the ordering criterion on MVS reconstructions with more uncontrolled data. Starting from the full set of training images at full resolution, we decrease reconstruction quality by (a) reducing the number of images used for reconstruction and (b) reducing the resolution of the images, and show that virtual rephotography detects these degradations.

We evaluate our system with two MVS reconstruction pipelines. In the first pipeline we generate a dense, colored point cloud with CMVS [Furukawa et al. 2010; Furukawa and Ponce 2010], mesh the points using Poisson surface reconstruction (PSR) [Kazhdan et al. 2006], and remove superfluous triangles generated from low octree levels. We refer to this pipeline as CMVS+PSR. In the second pipeline we generate depth maps for all views with an algorithm for community photo collections (CPCs) [Goesele et al. 2006; Fuhrmann et al. 2015] and merge them into a global mesh using a multi-scale (MS) depth map fusion approach [Fuhrmann and Goesele 2011] to obtain a high-resolution output mesh with vertex colors. We refer to this pipeline as CPC+MS.

We use a challenging dataset of 561 photos of an old city wall (downloadable from www.gcc.tu-darmstadt.de/home/proj/mvre) with fine details, non-rigid parts (e.g., people and plants) and moderate illumination changes (it was captured over the course of two days). We apply SIM [Snavely et al. 2006] once to the complete dataset and use the recovered camera parameters for all subsets of training and test images. We then split all images into 533 training images (T) and 28 evaluation images (E). To incrementally reduce the number of images used for reconstruction we divide T three times in half. We vary image resolution by using images of size $h \in \{375, 750, 1500\}$ (h is the images’ shorter side length). For evaluation we always render the reconstructed models with $h = 750$ and use a patch size of 9×9 pixels for all patch-based metrics.

Figure 7 shows results for CMVS+PSR, CPC+MS behaves similarly and its results are shown in the supplemental material. The graphs give multiple insights: First (Figure 7a), giving the reconstruction algorithm more images, i.e., increasing $|T|$ increases our completeness measure. The image resolution h on the other hand has only a small impact on completeness. And second (Figure 7b), increasing the image resolution h decreases the 1-NCC error: If we look at the boxplots for a fixed $|T|$ and varying h, they are separated and ordered. Analogously, 1-NCC can distinguish between datasets of varying $|T|$ and fixed h: Datasets with identical h and larger $|T|$ have a lower median error. These results clearly fulfill the desired ordering criterion stated above.

4.3 Comparison with Geometry-based Benchmark

The Middlebury MVS benchmark [Seitz et al. 2006] provides images of two objects, Temple and Dino, together with accurate camera parameters. We now investigate the correlation between virtual rephotography and Middlebury’s geometry-based evaluation using the TempleRing and DinoRing variants of the datasets, which are fairly stable to reconstruct and are most frequently submitted for evaluation. With the permission of their respective submitters, we analyzed 41 TempleRing and 39 DinoRing submissions with publicly available geometric error scores. We transformed the models with the ICP alignment matrices obtained from the Middlebury evaluation, removed superfluous geometry below the model base, textured the models [Waechter et al. 2014], and evaluated them.

Figure 8 shows 1-NCC rephoto error plotted against geometric error scores. Analyzing the correlation between 1-NCC and geometric error yields correlation coefficients of 0.63 for the TempleRing and 0.69 for the DinoRing, respectively. Figure 8 has, however,
several outliers that deserve a closer look: E.g., the geometric errors for the methods Merrell Confidence [Merrell et al. 2007] (marked with an a) and Generalized-SSD [Calakli et al. 2012] (marked b) are similar whereas their 1-NCC errors differ strongly. Conversely, the geometric errors of Campbell [2008] (c) and Hongxing [2010] (d) are very different, but their 1-NCC error is identical. We showed renderings of these models in Figure 2 and discussed the visual dissimilarity of 2a and 2b and the similarity of 2c and 2d in Section 1. Apparently, visual accuracy seems to explain why for the pairs a/b and c/d the rephoto error does not follow the geometric error. Clearly virtual rephotography captures aspects complementary to the purely geometric Middlebury evaluation.

4.4 Disjointness of Training and Test Set

Internal models of reconstruction algorithms can be placed along a continuum between local and global methods. Global methods such as MVS plus surface reconstruction and texture mapping produce a single model that explains the underlying scene for all views as a whole. Local methods such as image-based rendering produce a set of local models (e.g., images plus corresponding depth maps), each of which describes only a local aspect of the scene.

It is imperative for approaches with local models to separate training and testing images since they could otherwise simply display the known test images for evaluation and receive a perfect score. We therefore randomly split the set of all images into disjoint training and test sets (as is generally done in machine learning) and use cross-validation to be robust to artifacts caused by unfortunate splitting. However, using all available images for reconstruction typically yields the best results and it may therefore be undesirable to “waste” perfectly good images by solely using them for the evaluation. This is particularly relevant for datasets which contain only few images to begin with and for which reconstruction may fail when removing images. Also, even though cross-validation is an established statistical tool, it is very resource- and time-consuming.

We now show for the global reconstruction methods CPC+MS and CMVS+PSR that evaluation can be done without cross-validation with no significant change in the results. On the City Wall dataset we omit cross-validation and obtain the data points for \(|T| = 561 \) in Figure 7. Again, we only show the CMVS+PSR results here and show the CPC+MS results in the supplemental material. Most data points have a slightly smaller error than the median of the largest cross-validation experiments (\(|T| = 533\)), which is reasonable as the algorithm has slightly more images to reconstruct from. Neither CMVS+PSR nor CPC+MS seem to overfit the input images. We want to point out that, although this may not be generally applicable, it seems safe to not use cross-validation for the global reconstruction approaches used here. In contrast, the image-based rendering approaches such as the Unstructured Lumi-

![Fig. 8. 1-NCC rephoto error against geometric error for 41 TempleRing and 39 DinoRing datasets. Datasets marked with a–d are shown in Figure 2a–d. The dashed line is a linear regression fitted to the data points.](image)

Table I. Rephoto errors for different reconstruction representations of the Castle Ruin (Figure 1).

<table>
<thead>
<tr>
<th>Representation</th>
<th>Completeness</th>
<th>1-NCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh with texture</td>
<td>0.66</td>
<td>0.29</td>
</tr>
<tr>
<td>View-dependent texturing</td>
<td>0.66</td>
<td>0.39</td>
</tr>
<tr>
<td>Mesh with vertex color</td>
<td>0.66</td>
<td>0.47</td>
</tr>
<tr>
<td>Point cloud</td>
<td>0.67</td>
<td>0.51</td>
</tr>
<tr>
<td>Image-based rendering</td>
<td>0.66</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Graph [Buehler et al. 2001] will just display the input images and thus break an evaluation without cross-validation.

5. APPLICATIONS

Here we show two important applications of virtual rephotography: In Section 5.1 we demonstrate our approach’s versatility by applying it to different reconstruction representations. One possible use case for this is a 3D reconstruction benchmark open to all image-based reconstruction and rendering techniques, such as the one that we introduce in Section 6. Finally, in Section 5.2 we use virtual rephotography to locally highlight defects in MVS reconstructions, which can, e.g., be used to guide users to regions where additional images need to be captured to improve the reconstruction.

5.1 Different Reconstruction Representations

One major advantage of our approach is that it handles arbitrary reconstruction representations as long as they can be rendered from novel views. We demonstrate this using the Castle Ruin dataset (286 images) and five different reconstruction representations, four of which are shown in Figure 1:

—Point cloud: Multi-view stereo algorithms such as CMVS [Furukawa et al. 2010] output oriented point clouds, that can be rendered directly with surface splatting [Zwicker et al. 2001]. As splat radius we use the local point cloud density.

—Mesh with vertex color: This is typically the result of a surface reconstruction technique run on a point cloud.

—Mesh with texture: Meshes can be textured using the input images. Waechter et al. [2014] globally optimize the texture layout subject to view proximity, orthogonality and focus, and perform global luminance adjustment and local seam optimization.

—Image-based rendering: Using per-view geometry proxies (depth maps) we reproject all images into the novel view and render color images as well as per-pixel weights derived from a combination of angular error [Buehler et al. 2001] and TS3 error [Kopf et al. 2014]. We then fuse the color and weight image stack by computing the weighted per-channel median of the color images.

—View-dependent texturing: We turn the previous IBR algorithm into a view-dependent texturing algorithm by replacing the local geometric proxies with a globally reconstructed mesh.

Except for the IBR case we base all representations on the 3D mesh reconstructed with the CPC+MS pipeline. For IBR, we reconstruct per-view geometry (i.e., depth maps) for each input image using a standard MVS algorithm. For IBR as well as view-dependent texturing we perform leave-one-out cross-validation, the other representations are evaluated without cross-validation.

The resulting errors are shown in Table I. The 1-NCC error ranks the datasets in an order that is consistent with our visual intuition when manually examining the representations’ rephotoes: The textured mesh is ranked best. View-dependent texturing, that was
We calibrated to the CIE D65 white point and presented the Castle Ruin. We used two 1080p monitors which phy and human ratings for the five different reconstruction representations shown in Table II. We performed a user study to determine the correlation between virtual rephotography and human ratings for the five different reconstruction representations of the Castle Ruin. We used two 1080p monitors which we calibrated to the CIE D65 white point and 160 cd m\(^{-2}\) to ensure similar luminance and color display. Out of our 25 study participants 9 had a background in 3D reconstruction or computer graphics and 16 did not. Prior to the main study each participant underwent a tutorial explaining the task and letting them test the interface on a dataset of five examples. We reduced the Castle Ruin dataset to 142 randomly selected views. For each of the 142 views we first showed users the input photo and clicking revealed all five rephotos (one for each reconstruction representation). Those five rephotos were shown simultaneously on the two monitors at the same resolution at which the virtual rephotography framework evaluated them. Users then had to drag and drop the rephotos into the order of which rephoto they perceived as most respectively least similar to the input photo. They were instructed to not take black regions in the rephotos into account. No time limit was imposed on them and they could toggle back and forth between photo and rephotos at any time to compare them precisely. After users were satisfied with the order of the rephotos they could proceed to the next view. All 142 views were shown in random temporal order and for each view the five rephotos were shown in random spatial on-screen order.

On average, each user took about 71 min for all decisions. After the study we removed the results of two users who took a lot less time for their decisions than all others and three users who left rephotos at their (random) initial position significantly more often than random chance would predict. Thereby, we obtained a total of (25 – 2 – 3) · 142 rankings. The machine-computed virtual rephoto scores and the human rankings are not directly comparable. We therefore converted the machine scores into per-view per-scene-representation ranks. For the human rankings we eliminated the users as a variable of the data by computing the mode (i.e., most common value) over all users, also giving us per-view per-scene-representation ranks. We then computed Spearman’s rank correlation between machine and human ranks and obtained the correlations shown in Table II. 1-NCC and Census exhibit the strongest correlation with human judgment. The other metrics have a lower correlation with C\(_5\)+C\(_3\), having the lowest. Interestingly, in the decision times as well as the rank correlations we found almost no difference between the participants with a background in 3D reconstruction or computer graphics and the ones without.

There is a variety of potential reasons why the correlation between the users and, e.g., 1-NCC is smaller than 1, including the following: In a questionnaire that users filled out directly after the study, we asked them whether they preferred a globally consistent but slightly blurry rendering (e.g., from the point cloud) over a sharp, detailed rendering that had distinct image regions with different exposures and sharp transitions between these regions (e.g., from our view-dependent texturing implementation). 37% of all users affirmed this question, which indicates that humans at least partially take global effects such as consistency into account when judging image similarity. In contrast, the image difference metrics employed in this paper are strictly local (i.e., restricted to their patch size) in nature and almost always prefer the sharp image, because sharp regions have a small local error and only the relatively small transition regions have a high local error.

5.2 Error Localization

If the evaluated reconstruction contains an explicit geometry model (which is, e.g., not the case for a traditional light field [Levoy and Hanrahan 1996]), we can project the computed error images onto the model to visualize reconstruction defects directly. Multiple error images projected to the same location are averaged. To improve visualization contrast we normalize all errors between the 2.5% and 97.5% percentile to the range [0, 1], clamp errors outside the range and map all values to colors using the “jet” color map.

Figure 9 shows a 1-NCC projection on a reconstruction of the Lying Statue dataset. It highlights blob-like Poisson surface reconstruction artifacts behind the arm, to the right of the pedestal, and above the head. Less pronounced, it highlights the ground and the pedestal’s top which were photographed at acute angles.

Figure 10 shows that color defects resulting from combining images with different exposure are detected by the 1-NCC error.

Figure 11 shows a textured City Wall model and its 1-NCC error projection. The error projection properly highlights hard to reconstruct geometry (grass on the ground or the tower’s upper half, which was only photographed from a distance) and mistextured parts (branches on the tower or the pedestrian on the left). The supplemental material and the video show these results in more detail.

A point to discuss are occluders (e.g., pedestrians or plants) in a scene. Our metrics only measure differences between rephoto and test image and can therefore not tell which of both is “erroneous”. If a test image contains an occluder and the rephoto does not (because moving or thin objects tend to reconstruct badly), the difference will be high in that image region even though the reconstruction is in essence good. Interestingly, this is often not visible in the error projection: If the occluder has not been reconstructed, the high difference is projected to the scene part behind the occluder. Typically, scene parts are seen redundantly by many views and these views may or may not consistently see the occluder in front of the same scene part depending on the occluder’s and the camera’s movement. If an occluder stays at the same spot and is close to the geometry behind it, all views will consistently project their error to the same scene part, as is the case for the plant in Figure 10. But if the occluder moves or the camera moves around the occluder, the error will be projected to inconsistent places and averaged out, as is the case for the pedestrians in the City Wall: They only show up in the error projection wherever they are present in rephotos (i.e., where they were baked into the texture in Figure 11’s far left) but not where they are present in test images. So, for error...
localization, occluders in test images are not a big issue if there are enough test images to average them out.

6. BENCHMARK

Based on our proposed framework we built a benchmark for image-based modeling and rendering which is available online at ibmr-benchmark.gcc.informatik.tu-darmstadt.de. It provides training images with known camera parameters, asks submitters to render images using camera parameters of secret test images, and computes completeness and 1-NCC error score for the test images. For authors focusing on individual reconstruction aspects instead of a complete pipeline we provide shortcuts such as a decent mesh, depth maps for IBR, and texturing code. We believe that such a unified benchmark will be fruitful since it provides a common base for image-based modeling and rendering methods from both the graphics and the vision community. It opens up novel and promising research directions by “allow[ing] us to measure progress in our field and motivat[ing] us to develop better algorithms” [Szeliski 1999].

7. DISCUSSION

Evaluating the quality of a 3D reconstruction is a key component required in many areas. In this paper we proposed an approach that focuses on the rendered quality of a reconstruction, or more precisely its ability to predict unseen views, without requiring a ground truth geometry model of the scene. It makes renderable reconstruction representations directly comparable and therefore accessible for a general reconstruction benchmark.

While the high-level idea has already been successfully used for evaluation in other areas (optical flow [Szeliski 1999]), we are the first to use this for quantitative evaluation in image-based modeling and rendering and show with our experiments that it exhibits several desirable properties: First, it reports quality degradation when we introduce artificial defects into a model. Second, it reports degradation when we lower the number of images used for reconstruction or reduce their resolution. Third, it ranks different 3D reconstruction representations in an order that is consistent with our visual intuition, which is also supported by a correlation between human judgment and rephoto error that we found. And fourth, its errors are correlated to the purely geometric Middlebury errors but also capture complementary aspects which are consistent with our visual intuition (Figure 2). Measuring visual accuracy solely from input images leads to useful results and enables many use cases, such as measuring the reconstruction quality improvement while tweaking parameters of a complete pipeline or while replacing pipeline parts with other algorithms. Highlighting reconstruction defects locally on the mesh can be used for acquisition planning.

Although we focused on the 1-NCC error throughout this paper, we note that all patch-based metrics (1-NCC, Census, ZSSD, DSSIM, icID) behave similarly: They all show a strictly monotonic error increase in the experiment from Section 4.1, and they are close to scaled versions of 1-NCC in the experiments from Sections 4.2 and 4.3. In the supplemental material we show the full statistics for all experiments, all metrics, and the CPC+MS pipeline. The fact that all patch-based metrics behave largely similar does not come as a complete surprise: In the context of detecting global illumination and rendering artifacts Mantiu [2013] “did not find evidence in [his] data set that any of the metrics [...] is significantly better than any other metric.” We picked 1-NCC for presentation in this paper, because it separated the box plots in the experiment of Section 4.2 most clearly, it correlated most with human rankings in Section 5.1.1, and in our experience its error projections (Section 5.2) are most consistent with local reconstruction errors that we found manually while inspecting the reconstructions.

Based on our experiments, a set of basic insights for future reconstruction algorithms to produce reconstructions with low rephoto error is the following: Models should be complete and unfragmented (in contrast to Figure 2a), there should not be any small pieces floating around in front of the actual model (in contrast to the supplemental material’s Figure 3.3), and models do not need to
be too accurate in regions where inaccuracies will never be uncovered by any test image. E.g., if a reconstruction will be used for a computer game with first person perspective, test images (i.e., potential player positions) will all be close to the ground plane and may even be restricted to a certain path through the scene. Note, that the training images do not need to be restricted the same way.

7.1 Limitations

An important limitation of our approach is the following: Since it has a holistic view on 3D reconstruction it cannot distinguish between different error sources. If a reconstruction is flawed, it can detect this but is unable to pinpoint what effect or which reconstruction step caused the problem. Thus—by construction—virtual rephotography does not replace but instead complements other evaluation metrics that focus on individual pipeline steps or reconstruction representations. For example, if we evaluate an MVS plus texturing pipeline which introduces an error in the MVS step, virtual rephotography can give an indication of the error since visual and geometric error are correlated (Section 4.3). By projecting the error images onto the geometric model we can find and highlight geometric errors (Section 5.2). But to precisely debug only the MVS step, we have to resort to a geometric measure. Whether we use a specialized evaluation method such as Middlebury or a general method such as virtual rephotography, is a trade-off between the types and sources of errors the method can detect and its generality (and thus comparability of different reconstruction methods).

Another limitation revolves around various connected issues: Currently we do not evaluate whether a system handles surface albedo, BRDF, shading, interreflection, illumination or camera response curves correctly. They can in principle be evaluated, but one would have to use metrics that are less luminance-invariant than the investigated ones, e.g., mean squared error. Furthermore, one would need to measure and provide all information about the evaluation images which is necessary for correct novel-view prediction but cannot be inferred from the training images, e.g., illumination, exposure time, camera response curve, or even shadows cast by objects not visible in any of the images. Acquiring ground truth datasets for benchmarking, etc. would become significantly more complicated and time-consuming. In certain settings it may be appropriate to incorporate the above affects, but given that most 3D reconstruction systems do currently not consider them, and that virtual rephotography already enables a large number of new applications when using the metrics we investigated, we believe that our choice of metrics in this paper is appropriate for the time being.

7.2 Future Work

Similar to, e.g., Hoppe et al.’s [2012b] two-stage reconstruction procedure, our system could be used to localize error based on the 3D reconstruction of a previous image capture iteration and guide the user to low quality areas in a subsequent capture iteration.

Furthermore, we found that datasets based on community photo collections (tourist photos from photo sharing sites) are very challenging for virtual rephotography. Most problematic here are test images with occluders or challenging illumination that are effectively impossible to predict by reconstruction algorithms. We achieve partial robustness towards this by (a) using image difference metrics that are (to a certain extent) luminance/contrast invariant, and (b) averaging all error images, that contribute to the error of a mesh vertex, during the error projection step. This can average out the contribution of challenging test images. In our experience, for some community photo collection datasets this seems to work and the errors highlighted by the 1-NCC projection partially correspond with errors we found during manual inspection of the reconstructions (e.g., in Figure 12 the 1-NCC projection detects dark, blurry texture from a nighttime image on the model’s left side and heavily distorted texture on the model’s right), while for others it does clearly not. In the future we would like to investigate means to make our evaluation scheme more robust with respect to such challenging datasets.

ACKNOWLEDGMENTS

We are very grateful to Daniel Scharstein for providing us with the Middlebury benchmark submissions, the benchmark submitters who kindly permitted us to use their datasets, Rick Szeliski for valuable discussions about this paper, Florian Kaden for helping with the user study, and Benjamin Richter, André Schulz, Daniel Hitze, Stepan Konrad and Daniel Thul for helping with various programming and dataset acquisition things. This work was supported in part by the Intel Visual Computing Institute (project RealityScan).

REFERENCES

Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. 1999. Inverse global illumination: Recovering reflectance models of real scenes from photographs. In *SIGGRAPH*.

Received November 2015; accepted September 2016